Yükleniyor, lütfen bekleyiniz!

» » limit

18 Ocak 2009 | yazan: mathsman | 18 yorum

Limit nedir ?

Limit kavramı ve tanımı, kavram olarak eski olmasına kaşın, tanımlanması ve kullanılması çok eski değildir. Örneğin limit ünlü ε−δ tekniği ile tanımlanması ve kullanılması ülü Alman Matematikçisi Eduard Heine (1821-1881) tarafından olmştur. Limit fizik ve mühendislikte yaygın olarak kullanılılır. Limit kavramının öğrencilere verilmesi, tanıtılması, öğretilmesi ve öğrenilmesi öyle o kadar da kolay değildir. Bunun için, limitin tanıtılmasına önce sezgisel olarak yaklaşalım. Daha sonra tam tanımını verelim.
f(x) fonksiyonu verilsin. x noktası bir a noktasına yeteri kadar yaklaşsın. x noktasının a noktasına reel eksen üzerinde sağdan ve soldan olmak üzere, iki yönlü yaklaşımı vardır.




Burada, x değerinin a değerine eşit olması gerekmez. Bir çok durumda, a noktası, f(x) fonksiyonunun tanım bölgesinde olmayabilir. Yani, x noktası a noktasına (x≠a) sağdan ve soldan yaklaşırken f(x) fonksiyonu bir L sayısına yaklaşıyorsa f(x) fonksiyonunun bu a noktasında limiti vardır denir ve kısaca limit



A ⊂ IR olmak üzere f: A → IR , y = f(x) fonksiyonu verilsin. Eğer x değişkeninin değerleri sabit bir a gerçel sayısına istenildiği kadar yakın ise o zaman bu yaklaşma sembolik olarak x → a gibi gösterilir ve "x değişkeni a ya yaklaşıyor" şeklinde okunur. y = f(x) fonksiyonunun limitinin varlığı, x değişkeni a ya yaklaştığı zaman f(x) fonksiyon değerlerinin bir gerçel sayıya yaklaşıp yaklaşmamasına bağlıdır.f: A → IR fonksiyonu verilsin ve a sayısı A kümesinin yığılma noktası olsun. Eğer her ε > 0 için bir δ >0 sayısı bulunabiliyor ve 0 < | x - a | < δ eşitsizliğini sağlayan tüm x ∈ A değerleri için | f(x) - L | < ε eşitsizliği sağlanıyorsa, o zaman x → a iken f(x) in limiti L dir (veya f fonksiyonunun a noktasındaki limiti L dir) denir.

  Süreklilik nedir?
Limit kavramı ile süreklilik kavramının birbiriyle çok yakın ilşkisi vardır. Kısaca söylemek gerekirse, süreklilik bir limit problemidir.
A ⊂ IR olmak üzere f: A → IR fonksiyonu verilsin ve a ∈ A olsun. Eğer Lim f(x) ( x →  a ) limiti varsa ve bu limit f(x) fonksiyonunun x = a noktasındaki değeri olan f(a) ya eşitse,ise y = f(x) fonksiyonu x = a noktasında sürekli dir denir.

Konunun Daha fazla bilgindaki dökümanda limitin özellikleri , limit ve süreklilik ile ilgili çözümlü soruları , süreklilik konu anlatımı bulunmaktadır.

7 Ocak 2009 | yazan: bgultekin06 | 13 yorum

sıfır interal sembol artı eksi çarpıMatematikte önemli olan ve genelde karıştırılan iki ifade vardır. Tanımsız ve Belirsiz. Hatta ikisine de aynı diyenler bile çıkabiliyor. Bu karışıklık daha çok a≠0 için a/0 ifadesi de 0/0 ifadesi de tanımsız olarak algılanmaktan ortaya çıkıyor. Doğrusu sıfırdan farklı a değerleri için a/0=Tanımsız ve 0/0=Belirsiz olmalıdır. Aslında çok farklıdırlar ve anlaşılması çok kolaydır. Şimdi bu ifadeleri ispatlayarak farkı ortaya koymaya çalışalım.
Sıfırdan farklı a için a/0=x diyelim. Buradan a=0.x olacaktır. Bu eşitlikte x değerini adlandırmaya çalışalım. “0 ile çarpıldığında sıfırdan farklı a değerini verecek sayı”. Böyle bir tanımlanmadığı için x tanımsız olacaktır. Dolayısıyla x dediğimiz a/0 da tanımsız olur.

купить диплом воспитателя

viagra-on.com/comprare/levitra-generico

diploms-home.com